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Kenneth J. Arrow's pathbreaking "impossibility theorem" was a watershed innovation in the history

of welfare economics, voting theory, and collective choice, demonstrating that there is no voting rule

that satisfies the four desirable axioms of decisiveness, consensus, nondictatorship, and

independence. In this book Eric Maskin and Amartya Sen explore the implications of Arrow's

theorem. Sen considers its ongoing utility, exploring the theorem's value and limitations in relation to

recent research on social reasoning, and Maskin discusses how to design a voting rule that gets us

closer to the idealÃ¢â‚¬â€¢given the impossibility of achieving the ideal. The volume also contains a

contextual introduction by social choice scholar Prasanta K. Pattanaik and commentaries from

Joseph E. Stiglitz and Kenneth J. Arrow himself, as well as essays by Maskin, Dasgupta, and Sen

outlining the mathematical proof and framework behind their assertions.
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Without hyperbole, no postwar intellectual of the first rank has done more good for more

peopleÃ¢â‚¬â€¢above all, many of the world's poorestÃ¢â‚¬â€¢than Amartya Sen. (Boyd Tonkin

The Independent)What is Arrow's impossibility theorem? Why is it true? What are its implications for

democratic decision making? Is its nihilism justified? These are the kinds of questions addressed in

Maskin and Sen's masterful Arrow lectures. These lectures and the accompanying essays provide

an accessible introduction to Kenneth J. Arrow's theorem for the neophyte and much food for



thought for the cognoscente. (John A. Weymark, Vanderbilt University)How vital it is to understand

the ideas behind Kenneth J. Arrow's impossibility theorem if we want to design reasonably fair ways

of coming to consensus decisions that take equitable account of individual preferences. This book is

a marvelous introduction to the theorem, a keystone in the theory of social choice. We are treated to

a discussion of that theoryÃ¢â‚¬â€¢its origin, background, and the challenges it points

toÃ¢â‚¬â€¢by some of its great architects. (Barry Mazur, Harvard University, author of Imagining

Numbers)The pioneers of social choice theory give us lively, enjoyable, and stimulating lectures and

exchanges of ideas. Their views, more than sixty years after the publication of Kenneth J. Arrow's

theorem, are of paramount interest to anyone aware of the difficulties of collective decisions. (Marc

Fleurbaey, Princeton University)

Eric Maskin is the Adams University Professor at Harvard University. He received the 2007 Nobel

Memorial Prize in Economics (with L. Hurwicz and R. Myerson) for laying the foundations of

mechanism design theory. He has also contributed to game theory, contract theory, social choice

theory, political economy, and other areas of economics.Amartya Sen is the Thomas W. Lamont

University Professor and Professor of Economics and Philosophy at Harvard University. In 1998 he

was awarded the Nobel Memorial Prize in Economic Sciences, and in 1999 he was awarded the

Bharat Ratna, India's highest civilian award. He is also a senior fellow at the Harvard Society of

Fellows; distinguished fellow of All Souls College, Oxford; and a Fellow of Trinity College,

Cambridge. His books have been translated into more than thirty languages.

Let's say all the boys in class decide to rank their favorite 20 cars.So every boy writes down on a

piece of paper his own ranking of those 20 cars and then we go about listing how we would like to

work it all out.0. Suppose we want our ranking to be transitive. So if I know that in the final ranking

the Mercedes is above the Honda and the Honda is above the Fiat, then the Mercedes must be

above the Fiat.1. Suppose that no matter how many boys there are in class, no matter how many of

the (more than 20 factorial, to accommodate draws, missing cars etc.) permutations are submitted,

you want to want to come up with a voting scheme that will deliver one, definitive, ranking. (a

property of the scheme known us "Unrestricted Domain")2. Suppose that in this definitive ranking

the Ferrari beats the Mercedes. And then suppose we take the Chevrolet out of the list. If then we

repeat the vote without the Chevrolet but with all the other 19 cars, the Ferrari had better still beat

the Mercedes, or else our voting scheme is unsatisfactory. (a property known as "Independence of

Irrelevant Alternatives")3. Suppose that in every single boy's ranking the Daihatsu gets beaten by



the Lamborghini. It had better also get beaten in the final ranking. (a property known as the "Pareto

Principle")4. Suppose you don't want there to be a boy who always prevails over the rest if he likes

one car more than another (this is the "Non-Dictatorship Principle")The Arrow Impossibility Theorem

says you're out of luck. You can't get all of the above.I guess everybody who's been to elementary

school already knows this, but Kenneth J Arrow gave mathematical proof. The proof's rather easy to

follow and I close this review with my version of it. The book is dedicated to an exposition of the

Theorem and its ramifications.The result is not a big surprise, obviously, but it is the cornerstone of

a beautiful theory. Armed with this result, other economists and philosophers have over the years

looked at a number of "voting rules" such as the Anglo-Saxon "first past the post," the French runoff

system, the plurality voting rule, ranking of candidates etc. and worked out when they will yield

satisfactory results.This monograph of a book is written by some of the most prominent such

theoreticians, including Amartya Sen, Eric Maskin and Partha Dasgupta, with short contributions

from Joseph Stiglitz and Kenneth Arrow himself, all beautiful in their own way, though I must say I

was confused by the introduction by Prasanta Pattanaik.Also, there is a full paper here that derives

some very significant results concerning when "rank-order" voting "works well" (i.e. satisfies

conditions such as the ones I describe above), when "plurality rule" voting "works well," when

majority rule is decisive (answer: when there's no "Concordet triplet" such that x>y>z for fewer than

half the voters, y>z>x for fewer than half the voters and z>x>y for a third set of fewer than half the

voters) and finally all this work yields the extremely powerful result that if, given a set of preferences,

you can come up with some rule that "works well," then so will majority rule (and that therefore we

have not wasted 200 years of democracy using this rule)That said, mathematical symbols are used

when words would have fully sufficed. The complex math symbols are never, ever "pushed" in the

proof. A Lebesgue integral is defined for no reason. (No use is ever made of measure theory

anywhere past this definition) The author never says anything along the lines of "we recognize that

this set is a group and apply Theorem X from group theory." It's 100% math for the sake of math,

and I found that annoying, especially since the book is riddled with errata.For example, on p. 112

there are extra brackets around the main expression that don't belong; on p. 119 (and again on p.

120 and again on p.p. 143, 144) xRy and xRz and yRxRz and zRxRy are written with the second x's

and y's and z's as subscripts when the notation for "x dominates y under R" has been defined as

xRy; on p. 123 we are assured that for some t

This book consists of expository lectures by Sen and Maskin on ArrowÃƒÂ¢Ã‚â‚¬Ã‚â„¢s work,

commentary by Arrow himself, and supplementary materials especially an introduction by Pattanaik



and mathematical papers by Sen and Maskin. However the result would have been far more

successful if the organizers had invited a talk by someone like Donald Saari who could have given a

far deeper view of the famous Arrow theorem.At one point Sen even talks about the need to

broaden ÃƒÂ¢Ã‚â‚¬Ã‚Å“social choiceÃƒÂ¢Ã‚â‚¬Ã‚Â• theory to include richer sources of

information (pp. 76 ÃƒÂ¢Ã‚â‚¬Ã‚â€œ 80) ÃƒÂ¢Ã‚â‚¬Ã‚â€œ more than just the preferential or rank

orderings assumed by the Arrow theorem and used in common voting methods like the Borda

Count and Instant Runoff Voting. While a laudable goal, my feeling is that this needs a much

different approach, one involving nonlinear agents or dynamics. Yet incredibly Sen fails to note that

ArrowÃƒÂ¢Ã‚â‚¬Ã‚â„¢s impossibility result is, in fact, a direct consequence of an assumption that

drastically restricts the use of information that is already presents in the votersÃƒÂ¢Ã‚â‚¬Ã‚â„¢

rankings of candidates. This is, of course, the axiom of ÃƒÂ¢Ã‚â‚¬Ã‚Å“Independence of Irrelevant

AlternativesÃƒÂ¢Ã‚â‚¬Ã‚Â•, which I think might be better called the assumption of

ÃƒÂ¢Ã‚â‚¬Ã‚Å“Forbidden IntensityÃƒÂ¢Ã‚â‚¬Ã‚Â• (FI), as it forbids the voting algorithm from

using the intensity of a voterÃƒÂ¢Ã‚â‚¬Ã‚â„¢s ranking of one candidate over another.To illustrate

this concept, suppose I am a voter in an election with 4 candidates and I feel strongly that candidate

x is by far the best and that candidate y is by far the worst, while I am not enthusiastic about either

candidate a or b but would pick a over b if forced to. Thus I would rank these 4 candidates x > a > b

> y. However FI says that the electoral ranking, or ÃƒÂ¢Ã‚â‚¬Ã‚Å“social orderingÃƒÂ¢Ã‚â‚¬Ã‚Â•,

of these 4 candidates, as produced by the voting algorithm under consideration, should ignore this

difference. That is, the electoral ranking of x and y should not be affected by how I rank a or b

ÃƒÂ¢Ã‚â‚¬Ã‚â€œ that such rankings are ÃƒÂ¢Ã‚â‚¬Ã‚Å“irrelevantÃƒÂ¢Ã‚â‚¬Ã‚Â• even though

the way I rank a and b in between x and y is the way I express the strong intensity of my opinion, or

the weakness of this intensity when I rank no candidates between a and b.In other words, FI forces

the voting algorithm to ignore very important information provided by the voters. The intensity of a

ranking of x over y is easily quantified, using a variation on SaariÃƒÂ¢Ã‚â‚¬Ã‚â„¢s concept (pp.

189 - 191," Decisions and Elections", 2001), by defining Iv(x,y) = k if x > a1>ÃƒÂ¢Ã‚â‚¬Ã‚Â¦ ak-1>y

when voter v ranks k-1 candidates (a1,ÃƒÂ¢Ã‚â‚¬Ã‚Â¦,ak-1) between x and y. In addition set

Iv(x,x) = 0 and Iv(x,y)= -Iv(y,x) if x < y. Then Saari shows that the Borda Count satisfies all the Arrow

axioms if FI is modified to permit the voting algorithm to use this intensity function (which implies

voter transitivity). This modification Saari calls ÃƒÂ¢Ã‚â‚¬Ã‚Å“Intensity of Binary

IndependenceÃƒÂ¢Ã‚â‚¬Ã‚Â• but IÃƒÂ¢Ã‚â‚¬Ã‚â„¢d prefer to call it the assumption of

ÃƒÂ¢Ã‚â‚¬Ã‚Å“Permitted IntensityÃƒÂ¢Ã‚â‚¬Ã‚Â• (PI).In fact, ArrowÃƒÂ¢Ã‚â‚¬Ã‚â„¢s theorem

more properly applies to pairwise comparisons (showing the severe limitations of that approach to



voting, in line with the Condorcet paradox) rather than rank ordering, where SaariÃƒÂ¢Ã‚â‚¬Ã‚â„¢s

theorem hints at the fundamental role of the Borda Count. ArrowÃƒÂ¢Ã‚â‚¬Ã‚â„¢s theorem is also

a demonstration of the limitations of the axiomatic approach to voting algorithms, in that some

properties which may seem natural from one point of view may have hidden consequences which

require a much broader perspective. That perspective should focus more on the practical aspects of

voting than on theoretically undesirable properties which may rarely come into play or which can be

anticipated and guarded against by appropriate procedures.For example, as an activist

mathematician I often recommend that the Borda Count be used in the form ÃƒÂ¢Ã‚â‚¬Ã‚Å“rank

your top 3 choicesÃƒÂ¢Ã‚â‚¬Ã‚Â• (or sometimes 4 or 5), to reduce the cognitive workload of the

voter, the vote counting work load, and tactical voting. This seems to be by far the best method in

most informal or low key voting situations, such as when a group wants to rank action plans in a

way that builds consensus. Combining it with Peter EmersonÃƒÂ¢Ã‚â‚¬Ã‚â„¢s

ÃƒÂ¢Ã‚â‚¬Ã‚Å“modified Borda CountÃƒÂ¢Ã‚â‚¬Ã‚Â• is a good way to discourage single choice

voting. In more partisan or large scale situations, a danger is that a faction may run

ÃƒÂ¢Ã‚â‚¬Ã‚Å“cloneÃƒÂ¢Ã‚â‚¬Ã‚Â• candidates or superfluous alternatives to subvert the ranking

of true alternatives. In this case, a primary election may eliminate the clones, or in some cases

proportional representation may be used to identify different factions and their top candidates

(IÃƒÂ¢Ã‚â‚¬Ã‚â„¢ve developed my own clustering algorithm for this purpose).Instead of this kind

of practical work, Maskin tries to rescue FI by identifying restrictions to the rankings which will

satisfy FI. He cites BlackÃƒÂ¢Ã‚â‚¬Ã‚â„¢s ÃƒÂ¢Ã‚â‚¬Ã‚Å“single peakednessÃƒÂ¢Ã‚â‚¬Ã‚Â•

criterion, which guarantees a Condorcet winner. Then he defines simple, but impossible to enforce,

criteria for Borda and Plurality voting to satisfy FI. However I see FI as the problem, not the solution,

because of the way it refuses to admit important information. And how would you restrict how

people rank candidates in any kind of legal, let alone moral, way?There are also some issues with

the mathematics. First of all, SenÃƒÂ¢Ã‚â‚¬Ã‚â„¢s definition of decisiveness on p. 35 is not clear.

His wording says that for a particular voting algorithm a set of voters G is decisive for a pair of

candidates if whenever all voters in G rank x > y, then x > y in the electoral ranking. The problem

here is that uses set notation (is not ordered) but the notation x > y specifies an ordering. So should

the set be replaced by the ordered pair (x,y)?The answer is ÃƒÂ¢Ã‚â‚¬Ã‚Å“NoÃƒÂ¢Ã‚â‚¬Ã‚Â•

because then the proof of the Spread of Decisiveness Lemma fails. That is, the way to prove an

ordered pair version of the Lemma, following SenÃƒÂ¢Ã‚â‚¬Ã‚â„¢s sketch, would be to assume

that (a,b) is an arbitrary ordered pair such that all voters in G rank a > b. Then show that the

electoral ranking must specify a > b, given that G is decisive for some ordered pair (x,y).However



consider the case (a,b) = (y,x). Then the decisiveness of (x,y) tells us nothing about (a,b) since the

hypothesis fails; that is, x > y for all voters in G whereas we need y > x. If constitutes 3 voters with a

= y, we encounter a similar problem. WeÃƒÂ¢Ã‚â‚¬Ã‚â„¢d want to show a > b given x > y by

decisiveness, but the method of proof gives us instead b > x > y=a.Hence the correct definition of

decisiveness is that G is decisive for as a set if it decisive for both orderings. That is, if x > y for all

voters in G, then x > y electorally, or if y > x or all voters in G, then y > x electorally. This concept is

easily generalized to any set X of size 2 or more by saying that G is decisive for X as a set if G is

decisive for each ordering of X.Then SenÃƒÂ¢Ã‚â‚¬Ã‚â„¢s proof works if does not intersect . For

all voters ranking a > b, which includes all voters in G, we can use FI to transform any ranking of

into the canonical ranking a > x > y > b first by switching the ranking of x, then the ranking of y,

without affecting the ranking a > b. For all remaining voters we can switch x until a > x and y until y >

b, getting y > b > a > x. In both cases a > x and y > b for all voters, so a > x > y > b electorally using

Pareto for a > x and y > b and decisiveness for x > y. Hence a > b electorally by transitivity. Likewise

we get b > a electorally if b > a for all voters in G using the decisiveness of (y,x) for G, transforming

all b > a orderings to the canonical ordering b > y > x > a and the remaining orderings to x > a > b >

y.However, in the case of one of a or b = x or y, separate proof is needed. Take a = x for example

and first consider the case that a > b, including all voters in G. Then we can switch a

voterÃƒÂ¢Ã‚â‚¬Ã‚â„¢s ranking of a=x > b > y or of y > a=x > b into the canonical ranking a=x > y >

b by FI. For the remaining voters we could switch a ranking of b > a=x > y or of b > y > a=x into the

canonical ranking y > b > a=x. Thus we get y > b for all voters, so that y > electorally by Pareto,

which when combined with x > y electorally by decisiveness yields a > b electorally by the electoral

transitivity of a=x > y > b. If instead we want to prove b > a electorally, weÃƒÂ¢Ã‚â‚¬Ã‚â„¢d end of

up using the decisiveness of y > x by reduction to the canonical ordering b > y > a=x.This lemma

demonstrates the incredible power of the assumption of Forbidden Intensity, in fact how it is way too

powerful for its own good. ItÃƒÂ¢Ã‚â‚¬Ã‚â„¢s too bad that these economists have not been talking

to mathematicians like Saari, who have moved far ahead in their analysis.

This is a book that should be read and used in conjunction with the works of Elliott Jacques.
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